Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.766
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Brain Behav ; 14(5): e3482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715397

RESUMO

INTRODUCTION: Chronic adolescent stress profoundly affects prefrontal cortical networks regulating top-down behavior control. However, the neurobiological pathways contributing to stress-induced alterations in the brain and behavior remain largely unknown. Chronic stress influences brain growth factors and immune responses, which may, in turn, disrupt the maturation and function of prefrontal cortical networks. The tumor necrosis factor alpha-converting enzyme/a disintegrin and metalloproteinase 17 (TACE/ADAM17) is a sheddase with essential functions in brain maturation, behavior, and inflammatory responses. This study aimed to determine the impact of stress on the prefrontal cortex and whether TACE/ADAM17 plays a role in these responses. METHODS: We used a Lewis rat model that incorporates critical elements of chronic psychosocial stress, such as uncontrollability, unpredictability, lack of social support, and re-experiencing of trauma. RESULTS: Chronic stress during adolescence reduced the acoustic startle reflex and social interactions while increasing extracellular free water content and TACE/ADAM17 mRNA levels in the medial prefrontal cortex. Chronic stress altered various ethological behavioral domains in the observation home cages (decreased ingestive behaviors and increased walking, grooming, and rearing behaviors). A group of rats was injected intracerebrally either with a novel Accell™ SMARTpool TACE/ADAM17 siRNA or a corresponding siRNA vehicle (control). The RNAscope Multiplex Fluorescent v2 Assay was used to visualize mRNA expression. Automated puncta quantification and analyses demonstrated that TACE/ADAM17 siRNA administration reduced TACE/ADAM17 mRNA levels in the medial prefrontal cortex (59% reduction relative to control). We found that the rats that received prefrontal cortical TACE/ADAM17 siRNA administration exhibited altered eating patterns (e.g., increased food intake and time in the feeding zone during the light cycle). CONCLUSION: This study supports that the prefrontal cortex is sensitive to adolescent chronic stress and suggests that TACE/ADAM17 may be involved in the brain responses to stress.


Assuntos
Proteína ADAM17 , Córtex Pré-Frontal , Ratos Endogâmicos Lew , Estresse Psicológico , Animais , Masculino , Ratos , Proteína ADAM17/metabolismo , Comportamento Animal/fisiologia , Córtex Pré-Frontal/metabolismo , Reflexo de Sobressalto/fisiologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/metabolismo , Feminino
2.
Cell Mol Life Sci ; 81(1): 205, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703204

RESUMO

BACKGROUND: Exposure to chronic psychological stress (CPS) is a risk factor for thrombotic cardiocerebrovascular diseases (CCVDs). The expression and activity of the cysteine cathepsin K (CTSK) are upregulated in stressed cardiovascular tissues, and we investigated whether CTSK is involved in chronic stress-related thrombosis, focusing on stress serum-induced endothelial apoptosis. METHODS AND RESULTS: Eight-week-old wild-type male mice (CTSK+/+) randomly divided to non-stress and 3-week restraint stress groups received a left carotid artery iron chloride3 (FeCl3)-induced thrombosis injury for biological and morphological evaluations at specific timepoints. On day 21 post-stress/injury, the stress had enhanced the arterial thrombi weights and lengths, in addition to harmful alterations of plasma ADAMTS13, von Willebrand factor, and plasminogen activation inhibitor-1, plus injured-artery endothelial loss and CTSK protein/mRNA expression. The stressed CTSK+/+ mice had increased levels of injured arterial cleaved Notch1, Hes1, cleaved caspase8, matrix metalloproteinase-9/-2, angiotensin type 1 receptor, galactin3, p16IN4A, p22phox, gp91phox, intracellular adhesion molecule-1, TNF-α, MCP-1, and TLR-4 proteins and/or genes. Pharmacological and genetic inhibitions of CTSK ameliorated the stress-induced thrombus formation and the observed molecular and morphological changes. In cultured HUVECs, CTSK overexpression and silencing respectively increased and mitigated stressed-serum- and H2O2-induced apoptosis associated with apoptosis-related protein changes. Recombinant human CTSK degraded γ-secretase substrate in a dose-dependent manor and activated Notch1 and Hes1 expression upregulation. CONCLUSIONS: CTSK appeared to contribute to stress-related thrombosis in mice subjected to FeCl3 stress, possibly via the modulation of vascular inflammation, oxidative production and apoptosis, suggesting that CTSK could be an effective therapeutic target for CPS-related thrombotic events in patients with CCVDs.


Assuntos
Apoptose , Catepsina K , Cloretos , Modelos Animais de Doenças , Compostos Férricos , Trombose , Animais , Humanos , Masculino , Camundongos , Proteína ADAMTS13/metabolismo , Proteína ADAMTS13/genética , Catepsina K/metabolismo , Catepsina K/genética , Cloretos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Trombose/metabolismo , Trombose/patologia , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética
3.
Behav Brain Res ; 466: 114983, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38580200

RESUMO

Humans and other animals exhibit aversive behavioral and emotional responses to unequal reward distributions compared with their conspecifics. Despite the significance of this phenomenon, experimental animal models designed to investigate social inequity aversion and delve into the underlying neurophysiological mechanisms are limited. In this study, we developed a rat model to determine the effects of socially equal or unequal reward and stress on emotional changes in male rats. During the training session, the rats were trained to escape when a sound cue was presented, and they were assigned to one of the following groups: all escaping rats [advantageous equity (AE)], freely moving rats alongside a restrained rat [advantageous inequity (AI)], all restrained rats [disadvantageous equity (DE)], and a rat restrained in the presence of freely moving companions [disadvantageous inequity (DI)]. During the test session, rats in the advantageous group (AE and AI) escaped after the cue sound (expected reward acquisition), whereas rats in the disadvantageous group (DE and DI) could not escape despite the cue being presented (expected reward deprivation). Emotional alteration induced by exposure to restraint stress under various social interaction circumstances was examined using an open field test. Notably, the DI group displayed reduced exploration of the center zone during the open field tests compared with the other groups, indicating heightened anxiety-like behaviors in response to reward inequity. Immunohistochemical analysis revealed increased c-Fos expression in the medial prefrontal and orbitofrontal cortices, coupled with reduced c-Fos expression in the striatum and nucleus accumbens under DI conditions, in contrast to the other experimental conditions. These findings provide compelling evidence that rats are particularly sensitive to reward inequity, shedding light on the neurophysiological basis for distinct cognitive processes that manifest when individuals are exposed to social equity and inequity situations.


Assuntos
Comportamento Animal , Emoções , Proteínas Proto-Oncogênicas c-fos , Recompensa , Estresse Psicológico , Animais , Masculino , Ratos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Emoções/fisiologia , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia , Comportamento Animal/fisiologia , Comportamento Social , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Sinais (Psicologia) , Ratos Sprague-Dawley
4.
Behav Brain Res ; 467: 115005, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38641178

RESUMO

BACKGROUND: Post-traumatic stress disorder (PTSD) refers to a chronic impairing psychiatric disorder occurring after exposure to the severe traumatic event. Studies have demonstrated that medicinal cannabis oil plays an important role in neuroprotection, but the mechanism by which it exerts anti-PTSD effects remains unclear. METHODS: The chronic complex stress (CCS) simulating the conditions of long voyage stress for 4 weeks was used to establish the PTSD mice model. After that, behavioral tests were used to evaluate PTSD-like behaviors in mice. Mouse brain tissue index was detected and hematoxylin-eosin staining was used to assess pathological changes in the hippocampus. The indicators of cell apoptosis and the BDNF/TRPC6 signaling activation in the mice hippocampus were detected by western blotting or real-time quantitative reverse transcription PCR experiments. RESULTS: We established the PTSD mice model induced by CCS, which exhibited significant PTSD-like phenotypes, including increased anxiety-like and depression-like behaviors. Medicinal cannabis oil treatment significantly ameliorated PTSD-like behaviors and improved brain histomorphological abnormalities in CCS mice. Mechanistically, medicinal cannabis oil reduced CCS-induced cell apoptosis and enhanced the activation of BDNF/TRPC6 signaling pathway. CONCLUSIONS: We constructed a PTSD model with CCS and medicinal cannabis oil that significantly improved anxiety-like and depressive-like behaviors in CCS mice, which may play an anti-PTSD role by stimulating the BDNF/TRPC6 signaling pathway.


Assuntos
Ansiedade , Fator Neurotrófico Derivado do Encéfalo , Depressão , Modelos Animais de Doenças , Hipocampo , Transdução de Sinais , Transtornos de Estresse Pós-Traumáticos , Canal de Cátion TRPC6 , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Masculino , Depressão/tratamento farmacológico , Depressão/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Canal de Cátion TRPC6/metabolismo , Comportamento Animal/efeitos dos fármacos , Maconha Medicinal/farmacologia , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Óleos de Plantas/farmacologia , Óleos de Plantas/administração & dosagem , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo
5.
Pharmacol Biochem Behav ; 239: 173757, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574898

RESUMO

Depression is a major chronic mental illness worldwide, characterized by anhedonia and pessimism. Exposed to the same stressful stimuli, some people behave normally, while others exhibit negative behaviors and psychology. The exact molecular mechanisms linking stress-induced depressive susceptibility and resilience remain unclear. Connexin 43 (Cx43) forms gap junction channels between the astrocytes, acting as a crucial role in the pathogenesis of depression. Cx43 dysfunction could lead to depressive behaviors, and depression down-regulates the expression of Cx43 in the prefrontal cortex (PFC). Besides, accumulating evidence indicates that inflammation is one of the most common pathological features of the central nervous system dysfunction. However, the roles of Cx43 and peripheral inflammation in stress-susceptible and stress-resilient individuals have rarely been investigated. Thus, animals were classified into the chronic unpredictable stress (CUS)-susceptible group and the CUS-resilient group based on the performance of behavioral tests following the CUS protocol in this study. The protein expression of Cx43 in the PFC, the Cx43 functional changes in the PFC, and the expression levels including interleukin (IL)-1ß, tumor necrosis factor-α, IL-6, IL-2, IL-10, and IL-18 in the peripheral serum were detected. Here, we found that stress exposure triggered a significant reduction in Cx43 protein expression in the CUS-susceptible mice but not in the CUS-resilient mice accompanied by various Cx43 phosphorylation expression and the changes of inflammatory signals. Stress resilience is associated with Cx43 in the PFC and fluctuation in inflammatory signaling, showing that therapeutic targeting of these pathways might promote stress resilience.


Assuntos
Conexina 43 , Inflamação , Córtex Pré-Frontal , Estresse Psicológico , Animais , Córtex Pré-Frontal/metabolismo , Conexina 43/metabolismo , Camundongos , Estresse Psicológico/metabolismo , Masculino , Inflamação/metabolismo , Resiliência Psicológica , Camundongos Endogâmicos C57BL , Depressão/metabolismo , Citocinas/metabolismo , Suscetibilidade a Doenças , Comportamento Animal
6.
Neuropharmacology ; 252: 109949, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636726

RESUMO

Psychedelic compounds have potentially rapid, long-lasting anxiolytic, antidepressive and anti-inflammatory effects. We investigated whether the psychedelic compound (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI], a selective 5-HT2A receptor partial agonist, decreases stress-related behavior in male mice exposed to repeated social aggression. Additionally, we explored the likelihood that these behavioral changes are related to anti-inflammatory properties of [(R)-DOI]. Animals were subjected to the Stress Alternatives Model (SAM), an escapable social stress paradigm in which animals develop reactive coping strategies - remaining in the SAM arena (Stay) with a social aggressor, or dynamically initiated stress coping strategies that involve utilizing the escape holes (Escape) to avoid aggression. Mice expressing these behavioral phenotypes display behaviors like those in other social aggression models that separate animals into stress-vulnerable (as for Stay) or stress-resilient (as for Escape) groups, which have been shown to have distinct inflammatory responses to social stress. These results show that Stay animals have heightened cytokine gene expression, and both Stay and Escape mice exhibit plasma and neural concentrations of the inflammatory cytokine tumor necrosis factor-α (TNFα) compared to unstressed control mice. Additionally, these results suggest that a single administration of (R)-DOI to Stay animals in low doses, can increase stress coping strategies such as increasing attention to the escape route, promoting escape behavior, and reducing freezing during socially aggressive interaction in the SAM. Lower single doses of (R)-DOI, in addition to shifting behavior to suggest anxiolytic effects, also concomitantly reduce plasma and limbic brain levels of the inflammatory cytokine TNFα.


Assuntos
Adaptação Psicológica , Agressão , Anfetaminas , Alucinógenos , Estresse Psicológico , Animais , Masculino , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Alucinógenos/administração & dosagem , Alucinógenos/farmacologia , Adaptação Psicológica/efeitos dos fármacos , Adaptação Psicológica/fisiologia , Camundongos , Agressão/efeitos dos fármacos , Agressão/fisiologia , Anfetaminas/farmacologia , Anfetaminas/administração & dosagem , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/administração & dosagem , Reação de Fuga/efeitos dos fármacos , Capacidades de Enfrentamento
7.
Sci Rep ; 14(1): 8919, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637645

RESUMO

The natural alignment of animals into social dominance hierarchies produces adaptive, and potentially maladaptive, changes in the brain that influence health and behavior. Aggressive and submissive behaviors assumed by animals through dominance interactions engage stress-dependent neural and hormonal systems that have been shown to correspond with social rank. Here, we examined the association between social dominance hierarchy status established within cages of group-housed mice and the expression of the stress peptide PACAP in the bed nucleus of the stria terminalis (BNST) and central nucleus of the amygdala (CeA). We also examined the relationship between social dominance rank and blood corticosterone (CORT) levels, body weight, motor coordination (rotorod) and acoustic startle. Male C57BL/6 mice were ranked as either Dominant, Submissive, or Intermediate based on counts of aggressive/submissive encounters assessed at 12 weeks-old following a change in homecage conditions. PACAP expression was significantly higher in the BNST, but not the CeA, of Submissive mice compared to the other groups. CORT levels were lowest in Submissive mice and appeared to reflect a blunted response following events where dominance status is recapitulated. Together, these data reveal changes in specific neural/neuroendocrine systems that are predominant in animals of lowest social dominance rank, and implicate PACAP in brain adaptations that occur through the development of social dominance hierarchies.


Assuntos
Corticosterona , Núcleos Septais , Animais , Masculino , Camundongos , Tonsila do Cerebelo/metabolismo , Camundongos Endogâmicos C57BL , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Núcleos Septais/metabolismo , Predomínio Social , Estresse Psicológico/metabolismo
8.
Biochem Biophys Res Commun ; 704: 149706, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38432144

RESUMO

Glioma patients often undertake psychiatric disorders such as depression and anxiety. There are several clinical epidemiological studies on glioma-associated depression, but basic research and corresponding animal experiments are still lacking. Here, we observed that glioma-bearing mice exhibited atypical depression-like behaviors in orthotopic glioma mouse models. The concentrations of monoamine neurotransmitters were detected by enzyme-linked immunosorbent assay (ELISA), revealing a decrease in 5-hydroxytryptamine (5-HT) levels in para-glioma tissues. The related gene expression levels also altered, detected by quantitative RT-PCR. Then, we developed a glioma-depression comorbidity mouse model. Through sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST) and other tests, we found that the occurrence of glioma could lead to changes in depression-like behaviors in a chronic unpredictable mild stress (CUMS) mouse model. The results of RNA sequencing (RNA-seq) indicated that the altered expression of glutamatergic synapse related genes in the paratumor tissues might be one of the main molecular features of the comorbidity model. Our findings suggested that the presence of glioma caused and altered depression-like behaviors, which was potentially related to the 5-HT and glutamatergic synapse pathways.


Assuntos
Depressão , Serotonina , Humanos , Camundongos , Animais , Depressão/metabolismo , Serotonina/metabolismo , Antidepressivos/farmacologia , Comportamento Animal , Natação , Estresse Psicológico/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo
9.
J Neuroendocrinol ; 36(5): e13384, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38516965

RESUMO

Psychosocial stress negatively impacts reproductive function by inhibiting pulsatile luteinizing hormone (LH) secretion. The posterodorsal medial amygdala (MePD) is responsible in part for processing stress and modulating the reproductive axis. Activation of the neurokinin 3 receptor (NK3R) suppresses the gonadotropin-releasing hormone (GnRH) pulse generator, under hypoestrogenic conditions, and NK3R activity in the amygdala has been documented to play a role in stress and anxiety. We investigate whether NK3R activation in the MePD is involved in mediating the inhibitory effect of psychosocial stress on LH pulsatility in ovariectomised female mice. First, we administered senktide, an NK3R agonist, into the MePD and monitored the effect on pulsatile LH secretion. We then delivered SB222200, a selective NK3R antagonist, intra-MePD in the presence of predator odour, 2,4,5-trimethylthiazole (TMT) and examined the effect on LH pulses. Senktide administration into the MePD dose-dependently suppresses pulsatile LH secretion. Moreover, NK3R signalling in the MePD mediates TMT-induced suppression of the GnRH pulse generator, which we verified using a mathematical model. The model verifies our experimental findings: (i) predator odour exposure inhibits LH pulses, (ii) activation of NK3R in the MePD inhibits LH pulses and (iii) NK3R antagonism in the MePD blocks stressor-induced inhibition of LH pulse frequency in the absence of ovarian steroids. These results demonstrate for the first time that NK3R neurons in the MePD mediate psychosocial stress-induced suppression of the GnRH pulse generator.


Assuntos
Hormônio Luteinizante , Quinolinas , Receptores da Neurocinina-3 , Transdução de Sinais , Estresse Psicológico , Substância P/análogos & derivados , Animais , Feminino , Receptores da Neurocinina-3/metabolismo , Receptores da Neurocinina-3/antagonistas & inibidores , Receptores da Neurocinina-3/agonistas , Hormônio Luteinizante/metabolismo , Estresse Psicológico/metabolismo , Camundongos , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Complexo Nuclear Corticomedial/metabolismo , Complexo Nuclear Corticomedial/efeitos dos fármacos , Complexo Nuclear Corticomedial/fisiologia , Fragmentos de Peptídeos/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Camundongos Endogâmicos C57BL , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos
10.
J Ethnopharmacol ; 327: 117973, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38403002

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: It has been found that pilose antler peptide has an antidepressant effect on depression. However, the exact molecular mechanism of its antidepressant effect is still unclear. AIM OF THE STUDY: The study sought to determine the impact of monomeric pilose antler peptide (PAP; sequence LVLVEAELRE) on depression as well as investigate potential molecular mechanisms. MATERIALS AND METHODS: Chronic unexpected mild stress (CUMS) was used to establish the model, and the effect of PAP on CUMS mice was detected by the behavioral test. The influence of PAP on neuronal cells and dendritic spine density was observed by immunofluorescence and Golgi staining. FGFR3 and the CaMKII-associated pathway were identified using quantitative real-time polymerase chain reaction, and Western blot analysis was utilized to measure their proteins and gene expression levels. Molecular docking and microscale thermophoresis were applied to detect the binding of PAP and FGFR3. Finally, the effect of FGFR3's overexpression on PAP treatment of depression was detected. RESULTS: PAP alleviated the changes in depressive behavior induced by CUMS, promoted the growth of nerve cells, and the density of dendritic spines was increased to its original state. PAP therapy successfully downregulated the expression of FGFR3 and ERK1/2 while upregulating the expression of CREB, BDNF, and CaMKII. CONCLUSION: Based on the current research, PAP has a therapeutic effect on depression brought on by CUMS by inhibiting FGFR3 expression and enhancing synaptic plasticity.


Assuntos
Depressão , Peptídeos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Simulação de Acoplamento Molecular , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Hipocampo/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Modelos Animais de Doenças
11.
Transl Psychiatry ; 14(1): 130, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424085

RESUMO

Chronic stress is the primary environmental risk factor for major depressive disorder (MDD), and there is compelling evidence that neuroinflammation is the major pathomechanism linking chronic stress to MDD. Mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) is a negative regulator of MAPK signaling pathways involved in cellular stress responses, survival, and neuroinflammation. We examined the possible contributions of MKP-1 to stress-induced MDD by comparing depression-like behaviors (anhedonia, motor retardation, behavioral despair), neuroinflammatory marker expression, and MAPK signaling pathways among rats exposed to chronic unpredictable mild stress (CUMS), overexpressing MKP-1 in the hippocampus, and CUMS-exposed rats underexpressing MKP-1 in the hippocampus. Rats exposed to CUMS exhibited MKP-1 overexpression, greater numbers of activated microglia, and enhanced expressions of neuroinflammatory markers (interleukin [IL]-6, [IL]-1ß, tumor necrosis factor [TNF]-ɑ, and decreased phosphorylation levels of ERK and p38 in the hippocampus as well as anhedonia in the sucrose preference test, motor retardation in the open field, and greater immobility (despair) in the forced swimming tests. These signs of neuroinflammation and depression-like behaviors and phosphorylation levels of ERK and p38 were also observed in rats overexpressing MKP-1 without CUMS exposure, while CUMS-induced neuroinflammation, microglial activation, phosphorylation levels of ERK and p38, and depression-like behaviors were significantly reversed by MKP-1 knockdown. Moreover, MKP-1 knockdown promoted the activation of the MAPK isoform ERK, implying that the antidepressant-like effects of MKP-1 knockdown may be mediated by the ERK pathway disinhibition. These findings suggested that hippocampal MKP-1 is an essential regulator of stress-induced neuroinflammation and a promising target for antidepressant development.


Assuntos
Depressão , Transtorno Depressivo Maior , Animais , Ratos , Anedonia , Antidepressivos/uso terapêutico , Depressão/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Modelos Animais de Doenças , Regulação para Baixo , Hipocampo/metabolismo , Interleucina-6/metabolismo , Doenças Neuroinflamatórias , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338735

RESUMO

The menopause transition is a vulnerable period for developing both psychiatric and metabolic disorders, and both can be enhanced by stressful events worsening their effects. The present study aimed to evaluate whether a cafeteria diet (CAF) combined with chronic variable stress (CVS) exacerbates anxious- or depressive-like behavior and neuronal activation, cell proliferation and survival, and microglia activation in middle-aged ovariectomized (OVX) rats. In addition, body weight, lipid profile, insulin resistance, and corticosterone as an index of metabolic changes or hypothalamus-pituitary-adrenal (HPA) axis activation, and the serum pro-inflammatory cytokines IL-6, IL-ß, and TNFα were measured. A CAF diet increased body weight, lipid profile, and insulin resistance. CVS increased corticosterone and reduced HDL. A CAF produced anxiety-like behaviors, whereas CVS induced depressive-like behaviors. CVS increased serum TNFα independently of diet. A CAF and CVS separately enhanced the percentage of Iba-positive cells in the hippocampus; the combination of factors further increased Iba-positive cells in the ventral hippocampus. A CAF and CVS increased the c-fos-positive cells in the hippocampus; the combination of factors increased the number of positive cells expressing c-fos in the ventral hippocampus even more. The combination of a CAF and CVS generates a slight neuroinflammation process and neuronal activation in a hippocampal region-specific manner and differentially affects the behavior.


Assuntos
Corticosterona , Resistência à Insulina , Menopausa , Microglia , Proteínas Proto-Oncogênicas c-fos , Animais , Feminino , Ratos , Ansiedade/etiologia , Ansiedade/psicologia , Peso Corporal , Depressão/etiologia , Dieta/efeitos adversos , Lipídeos , Menopausa/metabolismo , Microglia/metabolismo , Estresse Psicológico/metabolismo , Fator de Necrose Tumoral alfa , Proteínas Proto-Oncogênicas c-fos/metabolismo
13.
J Ethnopharmacol ; 325: 117891, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38331122

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Parishin C (Par), a prominent bioactive compound in Gastrodia elata Blume with little toxicity and shown neuroprotective effects. However, its impact on depression remains largely unexplored. AIM OF THE STUDY: This study aims to investigate the antidepressant effects of Par using a chronic social defeat stress (CSDS) mouse model and elucidate its molecular mechanisms. MATERIALS AND METHODS: The CSDS-induced depression mouse model was used to evaluate the therapeutic efficacy of Par. The social interaction test (SIT) and sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST) were conducted to assess the effects of Par on depressive-like behaviours. The levels of corticosterone, neurotransmitters (5-HT, DA and NE) and inflammatory cytokines (IL-1ß, TNF-α, and IL-6) were evaluated by enzyme-linked immunosorbent assay (ELISA). Activation of a microglia was assessed by immunofluorescence labeling Iba-1. The protein expressions of NLRP3, ASC, caspase-1, and IL-6 verified by Western blot. RESULT: Oral administration of Par (4 and 8 mg/kg) and fluoxetine (10 mg/kg, administration significantly ameliorate depression-like behaviors induced by CSDS, as shown by the increase social interaction in SIT, increase sucrose preference in SPT and the decrease immobility in TST and FST. Par administration decreased serum corticosterone level and increased the 5-HT, DA and NE concentration in the hippocampus and prefrontal cortex. Furthermore, Par treatment suppressed microglial activation (Iba1) as well as reduced levels of IL-1ß, TNF-α, and IL-6) with decreased protein expressions of NLRP3, ASC, caspase-1, and IL-6. CONCLUSIONS: our study provides the first evidence that Par exerts antidepressant-like effects in mice with CSDS-induced depression. This effect appears to be mediated by the normalization of neurotransmitter and corticosterone levels, inhibition of NLRP3 inflammasome activation. This newfound antidepressant property of Par offers a novel perspective on its pharmacological effects, providing valuable insights into its potential therapeutic and preventive applications in depression treatment.


Assuntos
Glucosídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator de Necrose Tumoral alfa , Camundongos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Derrota Social , Corticosterona , Serotonina/metabolismo , Comportamento Animal , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Depressão/metabolismo , Hipocampo , Sacarose/metabolismo , Caspases/metabolismo , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Modelos Animais de Doenças
14.
Neuroendocrinology ; 114(5): 423-438, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38198758

RESUMO

INTRODUCTION: Previous studies have shown that fetal hypoxia predisposes individuals to develop addictive disorders in adulthood. However, the specific impact of maternal stress, mediated through glucocorticoids and often coexisting with fetal hypoxia, is not yet fully comprehended. METHODS: To delineate the potential effects of these pathological factors, we designed models of prenatal severe hypoxia (PSH) in conjunction with maternal stress and prenatal intrauterine ischemia (PII). We assessed the suitability of these models for our research objectives by measuring HIF1α levels and evaluating the glucocorticoid neuroendocrine system. To ascertain nicotine dependence, we employed the conditioned place aversion test and the startle response test. To identify the key factor implicated in nicotine addiction associated with PSH, we employed techniques such as Western blot, immunohistochemistry, and correlational analysis between chrna7 and nr3c1 genes across different brain structures. RESULTS: In adult rats exposed to PSH and PII, we observed increased levels of HIF1α in the hippocampus (HPC). However, the PSH group alone exhibited reduced glucocorticoid receptor levels and disturbed circadian glucocorticoid rhythms. Additionally, they displayed signs of nicotine addiction in the conditioned place aversion and startle response tests. We also observed elevated levels of phosphorylated DARPP-32 protein in the nucleus accumbens (NAc) indicated compromised glutamatergic efferent signaling. Furthermore, there was reduced expression of α7 nAChR, which modulates glutamate release, in the medial prefrontal cortex (PFC) and HPC. Correlation analysis revealed strong associations between chrna7 and nr3c1 expression in both brain structures. CONCLUSION: Perturbations in the glucocorticoid neuroendocrine system and glucocorticoid-dependent gene expression of chrna7 associated with maternal stress response to hypoxia in prenatal period favor the development of nicotine addiction in adulthood.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Estresse Psicológico , Tabagismo , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Estresse Psicológico/metabolismo , Tabagismo/metabolismo , Tabagismo/genética , Tabagismo/complicações , Ratos , Masculino , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Hipóxia Fetal/metabolismo , Hipóxia Fetal/complicações , Hipóxia Fetal/genética , Ratos Sprague-Dawley , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
15.
Stress Health ; 40(2): e3313, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37679965

RESUMO

To determine whether the relationship between inflammatory factors and clinically significant depression symptoms is moderated by high exposure to adverse childhood experiences and current life stressors in a longitudinal community cohort of midlife women. Methods: Participants from the Penn Ovarian Ageing Study community cohort (age at baseline: M = 45.3 [SD = 3.8]) were included in analyses if they had a blood sample measuring basal inflammatory markers during at least one visit where depression symptom severity and current stressful life events were also assessed (N = 142, average number of visits per participant = 1.75 [SD = 0.92]). Approximately annually over the course of 16 years, participants self-reported depression symptom severity using the Centre for Epidemiologic Studies Depression (CESD) Scale, provided menstrual diaries to determine menopause stage, and contributed blood samples. Residual blood samples were assayed for interleukin (IL)-6, IL 1-beta (IL-1ß), tumour necrosis factor alpha (TNF-α), and high sensitivity C-reactive protein (hsCRP). Early life stress was quantified using the Adverse Childhood Experiences questionnaire (low [0-1 experience(s)] versus high [≥ 2 experiences]). Current stressful life events were assessed using a structured interview (low [0-1 events] vs. high [≥ 2 events]). Generalised estimating equation models were used to model associations with the outcome of interest-clinically significant depression symptoms (CESD ≥16)-and risk factors: inflammatory marker levels (log transformed), adverse childhood experiences group, and current life stressors group. Covariates included menopause stage, age at study baseline, body mass index, race, and smoking status. We found a significant three-way interaction between log hsCRP levels, adverse childhood experiences group, and current life stressors group on likelihood of experiencing clinically significant depression symptoms (OR: 4.33; 95% CI: 1.22, 15.46; p = 0.024) after adjusting for covariates. Solely for women with high adverse childhood experiences and with high current life stressors, higher hsCRP was associated with higher odds of having clinically significant depression symptoms (OR: 1.46; 95% CI 1.07, 1.98; p = 0.016). This three-way interaction was not significant for IL-6, IL-1ß, or TNF-α. For women in midlife with exposure to high adverse childhood experiences and multiple current life stressors, elevated levels of CRP were uniquely associated with clinically significant depression symptoms. Early life adversity and current life stressors represent identifiable individual risk factors whose negative impact may be curtailed with inventions to target inflammation in midlife women.


Assuntos
Proteína C-Reativa , Depressão , Estresse Psicológico , Feminino , Humanos , Proteína C-Reativa/análise , Inflamação , Interleucina-6 , Estresse Psicológico/metabolismo , Fator de Necrose Tumoral alfa
16.
CNS Neurosci Ther ; 30(2): e14377, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37622283

RESUMO

INTRODUCTION: Major depressive disorder (MDD) affects about 17% population in the world. Although abnormal energy metabolism plays an important role in the pathophysiology of MDD, however, how deficiency of adenosine triphosphate (ATP) products affects emotional circuit and what regulates ATP synthesis are still need to be elaborated. AIMS: Our study aimed to investigate how deficiency of PGAM5-mediated depressive behavior. RESULTS: We firstly discovered that PGAM5 knockout (PGAM5-/- ) mice generated depressive-like behaviors. The phenotype was reinforced by the observation that chronic unexpected mild stress (CUMS)-induced depressive mice exhibited lowered expression of PGAM5 in prefrontal cortex (PFC), hippocampus (HIP), and striatum. Next, we found, with the using of functional magnetic resonance imaging (fMRI), that the functional connectivity between PFC reward system and the PFC volume were reduced in PGAM5-/- mice. PGAM5 ablation resulted in the loss of dendritic spines and lowered density of PSD95 in PFC, but not in HIP. Finally, we found that PGAM5 ablation led to lowered ATP concentration in PFC, but not in HIP. Coimmunoprecipitation study showed that PGAM5 directly interacted with the ATP F1 F0 synthase without influencing the interaction between ATP F1 F0 synthase and Bcl-xl. We then conducted ATP administration to PGAM5-/- mice and found that ATP could rescue the behavioral and neuronal phenotypes of PGAM5-/- mice. CONCLUSIONS: Our findings provide convincing evidence that PGAM5 ablation generates depressive-like behaviors via restricting neuronal ATP production so as to impair the number of neuronal spines in PFC.


Assuntos
Depressão , Transtorno Depressivo Maior , Camundongos , Animais , Depressão/diagnóstico por imagem , Depressão/genética , Depressão/metabolismo , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Trifosfato de Adenosina/metabolismo , Córtex Pré-Frontal/metabolismo , Metabolismo Energético , Estresse Psicológico/metabolismo , Camundongos Knockout , Fosfoproteínas Fosfatases/metabolismo
17.
Int J Neuropsychopharmacol ; 27(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038373

RESUMO

BACKGROUND: Depression is a neuropsychiatric disease with a high disability rate and mainly caused by the chronic stress or genetic factors. There is increasing evidence that microRNAs (miRNAs) play a critical role in the pathogenesis of depression. However, the underlying molecular mechanism for the pathophysiology of depression of miRNA remains entirely unclear so far. METHODS: We first established a chronic social defeat stress (CSDS) mice model of depression, and depression-like behaviors of mice were evaluated by a series of behavioral tests. Next, we detected several abundantly expressive miRNAs suggested in previous reports to be involved in depression and found miR-182-5p was selected as a candidate for analysis in the hippocampus. Then western blotting and immunofluorescence were used together to examine whether adeno-associated virus (AAV)-siR-182-5p treatment alleviated chronic stress-induced decrease in hippocampal Akt/GSK3ß/cAMP-response element binding protein (CREB) signaling pathway and increase in neurogenesis impairment and neuroinflammation. Furthermore, CREB inhibitor was adopted to examine if blockade of Akt/GSK3ß/CREB signaling pathway abolished the antidepressant actions of AAV-siR-182-5p in mice. RESULTS: Knockdown of miR-182-5p alleviated depression-like behaviors and impaired neurogenesis of CSDS-induced mice. Intriguingly, the usage of agomiR-182-5p produced significant increases in immobility times and aggravated neuronal neurogenesis damage of mice. More importantly, it suggested that 666-15 blocked the reversal effects of AAV-siR-182-5p on the CSDS-induced depressive-like behaviors in behavioral testing and neuronal neurogenesis within hippocampus of mice. CONCLUSIONS: These findings indicated that hippocampal miR-182-5p/Akt/GSK3ß/CREB signaling pathway participated in the pathogenesis of depression, and it might give more opportunities for new drug developments based on the miRNA target in the clinic.


Assuntos
Comportamento Animal , MicroRNAs , Animais , Camundongos , Derrota Social , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Hipocampo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Psicológico/metabolismo
18.
Eur J Pharmacol ; 963: 176247, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38056617

RESUMO

Neurogenesis is known to be closely associated with depression. We aimed to investigate whether a polypeptide monomer derived from pilose antler (polypeptide sequence LSALEGVFYP, PAP) exerts an antidepressant effect by influencing neurogenesis, and to elucidate the mechanism of its antidepressant action. Behavioral tests were performed to observe the antidepressant effect of PAP. Neurogenesis in the dentate gyrus (DG) region of hippocampus was observed by immunofluorescence. The expression of key proteins of Sentrin/SUMO-specific proteases 2 (SENP2)- Phosphoinositide-specific phospholipase C beta 4 (PLCß4) pathway was accessed by co-immunoprecipitation (Co-IP), and the calcium homeostasis associated proteins were observed via Western blot (WB). Subsequently, temozolomide (TMZ) pharmacologically blocked neurogenesis to verify the antidepressant effect of PAP on neurogenesis. The mechanism of PAP antidepressant effect was verified by constructing a sh-SENP2 virus vector to silence SENP2 protein. Finally, corticosterone (CORT)-induced PC12 cell model was used to verify whether PAP was involved in the process of deconjugated PLCß4 SUMOylated. The results showed that PAP improved depression-like behavior and neurogenesis induced by chronic unpredictable mild stimulation (CUMS). In addition, PAP acted on SENP2-PLCß4 pathway to deconjugate the SUMOylation of PLCß4 and affect calcium homeostasis. Pharmacological blockade of neurogenesis by TMZ treatment impaired the antidepressant efficacy of PAP. Knockout of SENP2 in the CUMS model attenuated the antidepressant response of PAP, and the impaired neurogenesis was not ameliorated by PAP treatment. In summary, PAP acted on the SENP2-PLCß4 signaling pathway to inhibit the SUMOylation of PLCß4 and maintain calcium homeostasis, thereby protecting neurogenesis and playing an antidepressant role.


Assuntos
Depressão , Peptídeo Hidrolases , Animais , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Fosfolipase C beta/metabolismo , Peptídeo Hidrolases/farmacologia , Cálcio/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Transdução de Sinais , Peptídeos/farmacologia , Endopeptidases/metabolismo , Endopeptidases/farmacologia , Hipocampo , Estresse Psicológico/metabolismo , Modelos Animais de Doenças
19.
Transl Psychiatry ; 13(1): 399, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105264

RESUMO

Maternal obesity has been recognized as a stressor affecting the developing fetal brain, leading to long-term negative outcomes comparable to those resulting from maternal psychological stress, although the mechanisms have not been completely elucidated. In this study, we tested the hypothesis that adverse prenatal conditions as diverse as maternal stress and maternal obesity might affect emotional regulation and stress response in the offspring through common pathways, with a main focus on oxidative stress and neuroplasticity. We contrasted and compared adolescent male and female offspring in two mouse models of maternal psychophysical stress (restraint during pregnancy - PNS) and maternal obesity (high-fat diet before and during gestation - mHFD) by combining behavioral assays, evaluation of the hypothalamic-pituitary-adrenal (HPA) axis reactivity, immunohistochemistry and gene expression analysis of selected markers of neuronal function and neuroinflammation in the hippocampus, a key region involved in stress appraisal. Prenatal administration of the antioxidant N-acetyl-cysteine (NAC) was used as a strategy to protect fetal neurodevelopment from the negative effects of PNS and mHFD. Our findings show that these two stressors produce overlapping effects, reducing brain anti-oxidant defenses (Nrf-2) and leading to sex-dependent impairments of hippocampal Bdnf expression and alterations of the emotional behavior and HPA axis functionality. Prenatal NAC administration, by restoring the redox balance, was able to exert long-term protective effects on brain development, suggesting that the modulation of redox pathways might be an effective strategy to target common shared mechanisms between different adverse prenatal conditions.


Assuntos
Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Masculino , Camundongos , Gravidez , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Obesidade Materna/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Psicológico/metabolismo
20.
Biomed Pharmacother ; 169: 115921, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38011787

RESUMO

Cryptotanshinone (CPT), a bioactive compound derived from the traditional Chinese herb Salvia miltiorrhiza, exhibits promising antidepressant properties. Employing a rat model subjected to Chronic Unpredictable Mild Stress (CUMS), behavioral analyses (open field experiment, elevated cross maze experiment, sugar water preference experiment, forced swimming experiment) and inflammatory factor assessments were conducted to assess the efficacy of CPT in alleviating depressive symptoms and inflammatory responses induced by CUMS. Moreover, 16 S rDNA analysis revealed alterations in the gut microbiota of rats exposed to both CUMS and CPT administration. Notably, CPT administration was found to mitigate harmful bacterial shifts associated with depression. Preliminary exploration of the molecular mechanism underlying CPT's antidepressant effects via transcriptomics analysis and molecular docking indicated that CPT might exert its influence by regulating the PI3K-AKT pathway. This study sheds light on the potential therapeutic role of CPT in managing depressive disorders, offering a comprehensive understanding of its impact on behavior, inflammation, gut microbiota, and molecular pathways.


Assuntos
Depressão , Microbioma Gastrointestinal , Ratos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Hipocampo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA